Universidade Federal do ABC Graduação em Engenharia Biomédica

Carlos Eduardo Basile Meneghini

DESENVOLVIMENTO PARA MAPEAMENTO DE BIOPOTENCIAIS EM ALTA DENSIDADE DO TORSO

Trabalho de Graduação

São Bernardo do Campo – SP

2019
Carlos Eduardo Basile Meneghini

DESENVOLVIMENTO PARA MAPEAMENTO DE BIOPOTENCIAIS EM ALTA
DENSIDADE DO TORSO

Trabalho de Graduação

Trabalho de Graduação apresentado ao Curso de Graduação Universidade
Federal do ABC, como exigência do curso de Engenharia Biomédica

Orientador: Prof Dr João Salinet

São Bernardo do Campo – SP

2019
SUMÁRIO

1. INTRODUÇÃO.. 4

2. Motivação.. 5

3. Revisão da Literatura... 6

3.1. Eletrocardiograma (ECG) .. 6

3.2. Derivações.. 6

3.3. Eletrocardiógrafo... 7

3.4. Pesquisas realizadas com BSPM para avaliação da atividade elétrica cardíaca.. 7

3.4.1. Mudanças no segmento ST em mapas potenciais em alta resolução da superfície do corpo medidos durante exercício para avaliar isquemia do miocârdio: um estudo piloto .. 7

3.4.2. ECG de mapeamento da superfície corporal em pacientes com diabetes mellitus gestacional e compensação metabólica ideal .. 8

3.4.3. Um novo algoritmo para diagnosticar a origem atrial ectópica a partir de um sistema de ECG de multi-derivações – Percepções a partir 3D virtual do átrio e torso humano.. 9

4. OBJETIVO .. 9

5. Metodologia... 10

5.1. Materiais e métodos .. 10

5.2. Plataforma BSPM .. 10

5.2.1. Visão geral ... 10

5.2.2. Biopotenciais ... 11

5.2.3. Pré-processamento digital ... 11

5.2.4. Demultiplexação .. 11

5.2.5. Mapeamento 3D dos Biopotenciais no Torso ... 12

5.2.6. Análises no Tempo .. 15

5.2.7. Gravação de dados .. 15

6. Resultados Preliminares e Esperados .. 16

6.1. Resultados Preliminares ... 16

6.1.1. Pré-processamento digital ... 16

6.1.2. Demultiplexação .. 16

6.1.3. Interface da plataforma ... 17

6.1.3. Gravação de dados .. 18

6.1.4. Mapeamento 3D dos Biopotenciais do Torso ... 18

6.2. Resultados Esperados .. 19

6.2.1. Pré-processamento digital ... 19

6.2.2. Gravação de dados ... 19

6.2.3. Mapeamento 3D dos Biopotenciais do Torso ... 19

6.2.4. Análise do Tempo ... 19

7. Resultados FINAIS Obtidos ... 19

7.1. Leitura e visualização de dados .. 19

7.2. Gráfico 3D.. 21

8. Discussão .. 21

8.1. Desenvolvimento da plataforma .. 21

8.2. Resultados obtidos ... 22

8.3. Além da plataforma .. 22

9. Conclusão .. 23

10. Bibliografia .. 23
1. INTRODUÇÃO

O mapeamento de biopotenciais em alta densidade do torso (BSPM) é uma tecnologia desenvolvida para assistir no diagnóstico precoce e minucioso de diversas doenças cardíacas, incluindo isquemia cardíaca aguda e infarto do miocárdio (AETNA, 2015). Trata-se de um sistema que usa de 30 a 300 eletrodos espacialmente distribuídos no torso de pacientes permitindo a aquisição da atividade elétrica cardíaca em alta densidade sobrepondo as limitações do eletrocardiograma (ECG) tradicional de 12 derivações. Além disso, este sistema fornece a representação tridimensional (3D) dos biopotenciais cujas amplitudes são codificadas por cores permitindo a análise de padrões de propagações da atividade elétrica do coração de forma não invasiva (AETNA, 2015).

Esse mapeamento por ser visto como uma extensão da eletrocardiografia convencional que reconhece o fato de que os campos elétricos cardíacos – distribuições de tensões e padrões de fluxo de corrente que surgem de correntes cardíacas – existem em toda a parte por dentro e na superfície do corpo. Alguns eletrocardiógrafos, como Waller, Einthoven e Wilson já reconheciam que o eletrocardiograma poderia ser medido a partir de qualquer superfície corporal e que os sinais medidos seriam diferentes em cada parte, mas, por causa das limitações tecnológicas da época, eles só conseguiam medir um ou no máximo alguns poucos locais ao mesmo tempo. (Macfarlane, et al., 2011)

Até pouco tempo atrás o principal fator limitante para essa tecnologia (BSPM) era a complexidade dos registros e análise dos sinais, que requer múltiplas derivações, instrumentação avançada, e pessoas qualificadas (AETNA, 2015).

Uma das hipóteses do raciocínio original do BSPM era de que a habilidade de visualizar os padrões dinâmicos dos potenciais cardíacos providenciaria uma imagem mais completa das fontes elétricas subjacentes do coração do que a provinda das 12 derivações tradicionais, permitindo melhores meios para se detectar e caracterizar doenças subjacentes como infarto, isquemia, anormalidades de condução, hipertrofia, e cardiomiopatia (Macfarlane, et al., 2011). Já o segundo raciocínio mais forte seria o de se usar os dados do mapeamento da superfície corporal para calcular, estimar,
caracterizar ou localizar as fontes elétricas dentro do coração, sendo capaz de gerar informações para se obter as sequências de despolarização (ativação) e polarização (recuperação). (Macfarlane, et al., 2011)

Embora as pesquisas em andamento continuem a pensar sobre o real papel do BSPM, a eficiência clínica desse procedimento ainda está em discussão. Ainda assim, tem sido demonstrado em estudos clínicos que o BSPM pode servir como uma ferramenta de pesquisa para estudar as manifestações eletrofisiológicas da síndrome coronária aguda na superfície do corpo, o que indica que uma melhor caracterização desse fenômeno pode ajudar na localização e estimação não invasiva do tamanho da região do miocárdio infartada (AETNA, 2015). Contudo, mais pesquisas são necessárias para acertar o valor do BSPM na avaliação diagnóstica de síndromes coronárias agudas (AETNA, 2015).

2. MOTIVAÇÃO

Apesar do ECG padrão de 12 derivações permanecer como uma ferramenta clínica mundialmente utilizada, um corpo considerável de evidências sugere que um exame “mais completo” de ECG é possível, uma vez que o exame padrão de ECG inclui uma forma limitada de mapeamento da superfície potencial do corpo cardíaco (GREEN, et al., 1994).

Uma amostragem espacial mais extensiva dos potenciais de ECG do que é fornecido pelo exame padrão de 12 derivações tem demonstrado utilidade clínica. Essa utilidade está diretamente relacionada com a informação regional seletiva obtida com um maior número de derivações registradas nos mapas de superfície corporal. Incluem-se questões como definição de sítios de ativação nos ventrículos, localização de caminhos acessórios na pré-excitacao de síndromes, localização de potenciais tardios, localização de sítios rítmicos nas cavidades ventriculares, e evidência de isquemia aguda do miocárdio não reconhecível usando critério padrão e ECGs (GREEN, et al., 1994).

Além disso, há anormalidades de condução e repolarização localizadas que são reconhecidas no gênese de uma variedade de arritmias cardíacas, onde algumas características dessas anormalidades podem ser inferidas por identificação de anormalidades do movimento da parede e algumas são
detectadas por registros e estimulações eletrofisiológicas invasivas, mas o registro da informação eletrofisiológica da superfície do corpo é mais amplamente aplicável e, em certas instâncias, mais informativo. A sensitividade regional do BSPM demonstrou utilidade clínica no que diz respeito às localização de caminhos de condução acessória nas síndromes de pré-excitacão, detecção e localização melhorada de potenciais tardios, atribuição melhorada de cateteres de estimulação em mapeamento de ritmo em conjunto com terapia de ablação, detecção de estados de repolarização das arritmias ventriculares, e avaliação da terapia para arritmia ventricular (GREEN, et al., 1994).

3. REVISÃO DA LITERATURA

3.1. Eletrocardiograma (ECG)

O ECG é o registro da atividade elétrica do coração por meio de eletrodos colocados sobre a superfície corporal. Representa a somatória de todas as atividades elétricas que ocorrem a cada instante do ciclo cardíaco. A sequência de eventos elétricos que resultam no ciclo sistole/diástole propaga-se através do volume condutor do tórax e pode ser medida na superfície do corpo através de eletrodos (MINISTÉRIO DA SAÚDE, 2002).

Tal registro tem por objetivo analisar o ritmo cardíaco, avaliar a condução do estímulo através do sistema de condução do coração e das suas cavidades, avaliar a integridade ou anormalidades do sistema de condução, detectar eventuais sobrecargas das cavidades cardíacas e zonas correspondentes à ausência de atividade elétrica (Sociedade Beneficente Israelita Brasileira Albert Einstein).

3.2. Derivações

O ECG pode ser medido sobre qualquer ponto do corpo humano. A corrente iônica gerada pela frente de despolarização é registrada pelos eletrodos dispostos no tórax do paciente. O coração é o gerador elétrico e o tórax, considerado um volume condutor linear, pode ser representado como uma carga resistiva; o potencial elétrico medido sofre atenuação com a distância do gerador (sobre o tórax, a amplitude típica é de 5mV). A morfologia do ECG depende dos seguintes fatores: estado do gerador, sinal elétrico, meio condutor, e distribuição e localização dos eletrodos de registro sobre a
superfície do corpo, denominada derivação. Na prática atual em
eletrocardiologia, existem 12 pontos padronizados para colocação dos
eletrodos: às derivações I, II e III de Einthoven somaram-se as seis derivações
introduzidas em 1932 por Charles Wolferth e Francis Wood, V1 a V6. As 12
derivações clássicas são obtidas de diversos sinais captados através de nove
eletrodos: dois nos braços, um na perna esquerda e 6 sobre o peito. Um
eletrodo adicional, tipicamente colocado na perna direita, é usado como
referência para reduzir a interferência externa (MINISTÉRIO DA SAÚDE,
2002).

3.3. Eletrocardiógrafo

Eletrocardiógrafo ou aparelho de eletrocardiografia é um instrumento ou
sistema de aquisição e processamento da atividade elétrica cardíaca. Os sinais
eletrônicos do coração são adquiridos através de eletrodos aplicados na
superfície do tórax. Tais sinais são filtrados e processados por meio de
sistemas computadorizados, gerando expressões gráficas e numéricas, que
são interpretadas pelo médico. Portanto, a avaliação de um aparelho de
eletrocardiografia deve contemplar todas as partes necessárias para obter,
processar e demonstrar a atividade elétrica cardíaca. A demonstração do
resultado poderá ser visualizada em tela, devendo permitir a sua impressão em
papel, além de possibilitar a edição do dado processado pelo médico/operador
(Guimarães, 2003).

3.4. Pesquisas realizadas com BSPM para avaliação da atividade
eletrica cardíaca

3.4.1. Mudanças no segmento ST em mapas potenciais em alta
resolução da superfície do corpo medidos durante exercício
para avaliar isquemia do miocárdio: um estudo piloto

O objetivo do estudo foi avaliar a isquemia do miocárdio pela análise das
mudanças no segmento ST em mapas potenciais em alta resolução da
superfície do corpo (HR-BSPM) medidos durante o repouso e durante exercício
de teste de estresse. O estudo foi feito com um grupo de 28 pacientes com
doença estável da artéria coronária e 15 voluntários saudáveis. Os HR-BSPM
foram medidos durante o repouso e durante exercício de teste de estresse no
ergômetro de supino. A carga de trabalho foi aumentada em estágios de 25 W
a cada 2 min, começando com 50 W. Os mapas da depressão do segmento ST foram calculados a partir dos registros de tempo médio no repouso e até a carga de trabalho máxima. A eficiência da detecção da isquemia do miocárdio foi maior para os HR-BSPM do que para o ECG padrão de 12 derivações quando ambos os métodos foram avaliados pelos resultados de coronariografia. A sensitividade dos HR-BSPM foi de 82,4% enquanto que para o exercício de teste de estresse do ECG padrão de 12 derivações foi de 58,8%. Para algumas pacientes mudanças significativas no segmento ST foram observadas nos HR-BSPM de estresse, mas não foram visíveis no registro do ECG padrão de 12 derivações sob as mesmas condições. Os altos valores obtidos de sensitividade e especificidade na detecção da isquemia do miocárdio sugerem que os mapas da depressão do segmento ST calculados a partir dos HR-BSPM podem melhorar a detecção dos pacientes com doença isquêmica do coração em comparação aos exames de teste de exercício de estresse com o eletrocardiograma padrão (Kania, et al., 2013).

3.4.2. ECG de mapeamento da superfície corporal em pacientes com diabetes mellitus gestacional e compensação metabólica ideal

Mulheres com diabetes mellitus gestacional (GDM) se encontram em risco aumentado para eventos de doenças cardíacas (CVD) se comparado com mulheres sem GDM. O objetivo do estudo foi avaliar 200 parâmetros do campo elétrico do coração em 35 mulheres com GDM sob compensação glicêmica ideal para comparar com 32 mulheres grávidas saudáveis. Todos os exames foram realizados na 36ª semana de gestação. Os parâmetros no ECG de mapeamento da superfície corporal (BSM) foram registrados pelo sistema de diagnóstico Cardiag 112.2. Os valores absolutos de máximo e mínimo na despolarização e repolarização isopotencial, isointegral e de isoárea dos mapas não foram significamente diferentes entre os grupos. Esses achados correspondem com o exame da variabilidade da frequência cardíaca. Contudo, o BSM revelou uma prolongação significante do complexo QRS (p=0,05), encurtamento do tempo de atividade do ventrículo do miocárdio (ICHVAT) (p=0,01), prolongação da duração média do QT (p=0,01) e aumento da dispersão do intervalo QT (p=0,01) em mulheres com GDM. A duração do QRS e ICHVAT significamente correlacionaram com o septo interventricular e espessura da parede posterior no grupo GDM, o intervalo QTd correlacionou
significamente com o nível de HbA1C. Foi-se concluído que apesar do controle metabólico ideal diverso anormalidades significantes detectadas pelo ECG BSM ainda se encontram presentes em pacientes com GDM (ŽÁKOVIČOVÁ, et al., 2014).

3.4.3. Um novo algoritmo para diagnosticar a origem atrial ectópica a partir de um sistema de ECG de multi-derivações – Percepções a partir 3D virtual do átrio e torso humano

A atividade ectópica é associada com múltiplas desordens cardíacas e tem sido implicada na iniciação de excitação reentrante autossustentável. A identificação da presença e origem de atividade ectópica pode ser vital no melhoramento do diagnóstico e tratamento de desordens como fibrilação atrial, e tem sido objeto de múltiplos estudos. A atividade elétrica do coração pode ser monitorada de forma não invasiva através de eletrocardiograma. Contudo, o eletrocardiograma padrão de 12 derivações pode não fornecer informação suficiente para solucionar o foco da atividade ectópica satisfatoriamente e acuradamente. Usando um modelo computacional 3D do átrio-torso desenvolvido em laboratório, foi-se estimulada a atividade elétrica do átrio sob condições normais e ectópicas. O modelo foi validado primeiramente pela comparação dos dados experimentais, e então usado para desenvolver um algoritmo para identificar a localização do foco atrial ectópico usando um equipamento de 64 derivações. O algoritmo desenvolvido foi capaz de identificar a origem da atividade atrial ectópica em 75/80 simulações, o qual é um melhoramento significante se comparado aos algoritmos previamente desenvolvidos. Além do mais, o estudo sugere que eletrocardiogramas de alta densidade de derivações fornece benefícios significantes sobre a configuração padrão de 12 derivações (Alday, et al., 2015).

4. OBJETIVO

O objetivo deste projeto foi desenvolver uma plataforma BSPM de 64 canais em LabVIEW™ (National Instrument) para futura aplicação clínica.
5. METODOLOGIA

5.1. Materiais e métodos

Os passos para o desenvolvimento desse projeto envolveram revisão bibliográfica dos avanços relacionados aos sistemas BSPM e sua aplicação clínica.

Juntamente com o Incor (Instituto do Coração) e orientação do Prof Dr João Salinet, os métodos de estudo desse trabalho incluíram participar da elaboração de um sistema BSPM, cumprindo com o papel de contribuir com o desenvolvimento de uma plataforma utilizando o software LabVIEW, permitindo a visualização e processamento dos sinais cardíacos (domínio do tempo e frequência) provenientes de diversos eletrodos distribuídos na superfície do tórax e costas de pacientes. Para isso foi utilizado o *NI LabVIEW Biomedical Toolkit* para validação da plataforma permitindo o uso de sinais sintéticos e também biopotenciais de 2 pacientes com fibrilação atrial cedido pelo Prof. Dr. Fernando Schlindwein da Universidade de Leicester (Inglaterra). Além disso, foi utilizado o sistema hardware em desenvolvimento pelo Incor para captura dos biopotenciais.

5.2. Plataforma BSPM

5.2.1. Visão geral: a plataforma BSPM foi desenvolvida em *LabVIEW™* (versão 14.0.1f3, 32-bit), *National Instruments (NI)* objetivando a aquisição de até 64 simultâneos BSPs (32 eletrodos posicionados no tórax e 32 nas costas). Tais sinais são enviados para 4 placas de aquisição desenvolvidas pelo Incor, onde cada uma dessas placas possui 16 canais de pré-processamento analógico e são isoladas eletricamente para proteção contra efeitos de descarga de desfibrilador por meio de um circuito de lâmpada neon. Como há somente um circuito de isolamento por placa, os sinais são multiplexados, ou seja, cada placa possui uma única saída digital de 16 canais multiplexados (Mazzetto, et al., 1997). Os sinais de cada placa então são enviados para um dispositivo *DAQ* da *National Instruments*, e esse envia os sinais para o computador da plataforma onde são lidos pelo algoritmo desenvolvido no
LabVIEW. As etapas de processamento da plataforma do BSPM são descritas a seguir.

5.2.2. Biopotenciais: sinais sintéticos de ECG normais e arrítmicos com frequência de amostragem de 1 kHz foram gerados com o *NI LabVIEW Biomedical Toolkit* para validação da plataforma. Além disso, BSPs durante fibrilação atrial e ritmo sinusal de 2 pacientes com fibrilação atrial do tipo persistente foram utilizados.

5.2.3. Pré-processamento digital: utilizando-se de protocolos estabelecidos pela literatura (Thakor, et al., 1984), os sinais passam por um filtro passa banda de frequência de corte entre 0,5 e 150 Hz. Dessa forma, primeiramente o valor médio dos sinais é subtraído. Em seguida a estimação da linha de base é realizada através dos seguintes passos: um filtro Butterworth de décima ordem é aplicado; os sinais são reamostrados numa frequência menor do que a inicial (40 Hz) e filtrados por um filtro passa-baixa de corte 0,5 Hz; o sinal resultante é reamostrado de volta para a frequência original (1 kHz) e subtraído dos sinais. Após isso os sinais são então filtrados por mais um filtro passa-baixa de corte 150 Hz. Os ruídos gerados pela rede são eliminados por um filtro do tipo IIR rejeita-faixa de quinta ordem para 60 Hz, e os ruídos provenientes de mau contato são descartados por meio de função Self-test.

5.2.4. Demultiplexação: prevendo que os sinais serão recebidos por meio de 4 canais do *DAQ*, por causa das placas de aquisição, uma simulação foi criada de forma a realizar 4 demultiplexações por canal. Cada demultiplexação é feita pela função *Decimate 1D Array*, e posteriormente todos os sinais são agrupados numa única *array* através da função *Build Array*. Essa *array* final então é distribuída para todos os sistemas seguintes, como mapeamento 3D, geração de gráficos, gravação de dados etc. Um teste com as funções *Interleave 1D Arrays* e *Decimate 1D Array* foi feita para se comprovar a capacidade de demultiplexação, conforme a Figura 1.
5.2.5. Mapeamento 3D dos Biopotenciais no Torso: a geometria 3D de um torso padrão é criada a partir dos 410 vértices e suas respectivas coordenadas X, Y e Z obtidas do software gratuito com finalidades educacionais e de pesquisa (ECGSIM). A função ‘patch’ do Matlab permite a construção da malha 3D através da triangulação da sequência de três distintos vértices. Ao todo são 816 sequências de 3 vértices cada. Uma vez que os autores desconhecem função similar no LabVIEW, 399 vértices (de 410) são selecionados, excluindo os vértices referentes ao pescoço e quadril. As respectivas coordenadas X de cada vértice são alocadas em uma matiz 21x19. Isto se repete para as demais coordenadas Y e Z. Como resumo, há 3
matrizes (coordenadas X, Y e Z) com os vértices distribuídos sequencialmente nos elementos das matrizes.

A geometria 3D do torso padrão é criada em LabVIEW pela função ‘3D Surface plot’ utilizando as 3 matrizes X, Y e Z obtidas. A codificação de cores no 3D do torso é feita de acordo com a amplitude (em mili-volts) de cada um dos 64 BSPs obtidos no torso. Menores valores de voltagem recebem azul e maiores, vermelho escuro. Para isto, uma quarta matriz (21x19) é gerada. As posições dos eletrodos são respectivamente identificadas nos vértices do 3D do torso. Para cada instante de tempo, os valores de amplitude de cada eletrodo possibilitam a geração dos mapas sequenciais em 3D dos biopotenciais.

Para a geração então da matriz de valores que iria alimentar o gráfico 3D do torso, uma matriz inicial 2D de 21x19 foi criada atribuindo-se o valor 3 a todos os elementos para se ter uma escala de cor representado o zero (verde). Em seguida criou-se 8 vetores com a função Array Subset para se extrair os valores de cada eletrodoto. Cada vetor representa uma faixa com 8 eletrodos. Logo, 8 vetores com 8 eletrodos somam os 64 eletrodos avaliados. Tal disposição ficou análoga ao da Figura 2, porém usando-se somente 4 faixas de eletrodos na frente do torso e 4 atrás.

![Figura 2 - Exemplo da disposição dos eletrodos usada para a geração do gráfico 3D.](image)
Após selecionar os valores dos eletrodos desejados, tais valores foram inseridos então na matriz 21x19 criada inicialmente usando-se 8 funções *Replace Subset Array*, para substituir, de forma subsequente, as colunas e linhas desejadas da matriz principal com os valores dos vetores nas posições determinadas para o torso. Tal diagrama de blocos mostrando a construção dessa matriz de valores final para o gráfico 3D pode ser vista na Figura 3.

Figura 3 - Diagrama de blocos da construção da matriz de valores para o gráfico 3D.

Por fim, com a matriz de valores construída, os seus dados foram lançados numa função *Creat Plot Parametric* para plotar o gráfico 3D a partir de 3 arquivos .txt com as coordenadas cartesianas representando o torso, lidas a partir de 3 funções *Read From Spreadsheet File*, conforme Figura 4.

Figura 4 - Diagrama de blocos da plotagem do gráfico 3D do torso.
5.2.6. **Análises no Tempo:** cada um dos 64 BSPs são visualizados na plataforma por meio de gráficos 2D, onde o eixo X corresponde ao tempo (segundos) e o eixo Y amplitude (Figura 6). Ambos os eixos X e Y podem ser configurados pelo operador. Além disso, a plataforma permite analisar os episódios P-QRS-T de forma isolada (Figura 7).

A detecção dos picos R nos segmentos do QRS dos BSPs é realizada utilizando técnicas previamente validadas, através de filtros passa-banda e limiares adaptativos (Ahmad, et al., 2011) (Sörnmo, et al., 2005). Para isto, os autores assumem que a faixa de frequência correspondente ao complexo do QRS é de 5-30 Hz (Thakor, et al., 1984). Um filtro passa-banda (8 Hz a 20 Hz) de resposta de impulso finita (FIR) e fase linear (Ahmad, et al., 2011) é implementado. Os valores das frequências de corte foram escolhidos considerando os valores máximos e mínimos de repolarização dos ventrículos (70-110 ms) em corações tidos como ‘normais’ ou ‘saudáveis’ (Sörnmo, et al., 2005). Os sinais são então retificados e filtrados utilizando um filtro FIR com frequência de corte de 6 Hz. Este frequência é escolhida pelos autores em referência ao menor intervalo RR do ECG, o que corresponde a 354 batimentos por minuto (Ahmad, et al., 2011).

5.2.7. **Gravação de dados:** com relação ao armazenamento dos dados lidos pelo algoritmo, foi possível desenvolver um esquema que capta os valores de todos os canais de uma só vez e os grava num arquivo de texto no formato *lvm* usando a função *Concatenate Strings* e um conjunto de funções com *Write Measurement File*, conforme Figura 5.
6. RESULTADOS PRELIMINARES E ESPERADOS

6.1. Resultados Preliminares

6.1.1. Pré-processamento digital: os processos de filtragem são mais simples de se implementar, porém a reamostragem é um pouco mais complexa de se elaborar e necessitaria de melhor aprofundamento. Para saber se a reamostragem estava sendo realizada corretamente, testes foram feitos com sinais conhecidos, de forma a ter como conferir quais valores devem ser visualizados por meio de matrizes.

6.1.2. Demultiplexação: diversos testes para demultiplexar sinais simulados foram realizados e, através da função Decimate 1D Array foi possível obter satisfatória visualização dos resultados, onde pôde-se ver que os sinais de saída corroboram exatamente com os sinais de entrada. Todavia, testes com sinais obtidos por meio de um gerador de sinais, com aquisição por meio de uma das placas de aquisição e o dispositivo DAQ, não mostraram uma saída muito coerente com o que era esperado, talvez porque o pré-processamento analógico ainda não estava adequado. Porém, pôde-se observar que havia, sim, uma demultiplexação sendo realizada. A engenharia do Incor reajustou alguns componentes dos filtros analógicos da placa de aquisição para novos testes. Além disso, trabalhou-se para receber o sinal de
trigger da placa de aquisição para auxiliar na identificação dos canais após a demultiplexação (Mazzetto, et al., 1997).

6.1.3. Interface da plataforma: a interface foi modificada diversas vezes para adequar uma melhor visualização dos sinais e ainda se viu que há a necessidade de se passar por mais modificações até que se obtenha uma plataforma intuitiva e de fácil manipulação dos dados. De qualquer forma, a princípio foram feitas 3 abas principais: uma para ajustar o pré-processamento; outra para visualizar o complexo P-QRS-T de 16 dos 64 canais, a escolha do usuário; e outra para visualizar um sinal mais extenso de ECG com vários complexos P-QRS-T de 4 dos 64 canais. Além disso, é possível visualizar o torso 3D com os potenciais fluindo por ele através de esquema de cores. Na Figura 6 pode-se ver uma ilustração da plataforma com a aba dos 4 sinais mais extensos de um ECG simulado mais o mapeamento 3D dos potenciais no torso, e na Figura 7 pode-se visualizar a aba que mostra um pulso de ECG por vez de 16 dos 64 canais.

![Figura 6 – Visualização de 4 sinais de ECG simulado e mapeamento 3D do torso com esquema de cores para os potenciais.](image.png)
6.1.3. **Gravação de dados**: testes foram feitos para demarcar corretamente os dados de cada canal e inserir um texto no cabeçalho conforme desejado e obteve-se sucesso. Todavia, falta finalizar e implementar melhor esse sistema para que os dados do paciente possam ser inseridos e para que o usuário possa salvar novos arquivos sempre que quiser, pois por ora o sistema continua a gravação num mesmo arquivo e mantém os dados desde o início.

6.1.4. **Mapeamento 3D dos Biopotenciais do Torso**: com os testes atuais é possível ver o esquema de cores se modificando conforme a amplitude do sinal simulado varia, porém não é o tipo de visualização desejada, pois a simulação realizada sincroniza o mesmo sinal por todo o torso, como visto na Figura 6.
6.2. Resultados Esperados

6.2.2. Gravação de dados: assim que o algoritmo de gravação for finalizado, espera-se ser possível iniciar e parar a gravação sempre que quiser e sempre num arquivo diferente, visualizar os dados do paciente no arquivo, e poder designar o tipo de formato a ser salvo.

6.2.3. Mapeamento 3D dos Biopotenciais do Torso: no caso de uma leitura real os potencias são diferentes no mesmo tempo em cada eletrodo, portanto espera-se ver um esquema de cores variável por todo o torso. Tal visualização será possível ao conseguir rodar dados já salvos de testes de BSPM disponíveis por outros pesquisadores.

6.2.4. Análise do Tempo: a plataforma também permitirá a detecção dos picos R nos segmentos do QRS dos biopotenciais. Estes serão realizados utilizando técnicas previamente validadas, através de filtros passa-banda e limiares adaptativos (Ahmad, Salinet et al., 2011; Sörnmo, Laguna et al., 2005). A identificação dos picos R e seus respectivos intervalos RR’s permite a construção dos Tacogramas. Métricas estatísticas referentes ao batimento cardíaco e sua variabilidade serão computadas e apresentadas na plataforma BSPM em desenvolvimento.

7. RESULTADOS FINAIS OBTIDOS

7.1. Leitura e visualização de dados

A partir dos arquivos fornecidos pela Universidade de Leicester, foi possível visualizar claramente os sinais de ECG com até 16 canais ao mesmo tempo, conforme Figura 8, onde o usuário pode escolher quais dos 64 canais gostaria de ver, bem como os 4 sinais estendidos de ECG, conforme Figura 9.
Figura 8 - Visualização simultânea de 16 canais de ECG com os dados da Universidade de Leicester.

Figura 9 - 4 sinais estendidos de ECG com os dados da Universidade de Leicester.
7.2. Gráfico 3D

Da mesma forma, usando-se dos dados da Universidade de Leicester, e agrupando corretamente os valores desses dados, foi possível uma boa visualização 3D do torso com uma distribuição de cores mais próxima do que era esperado, conforme Figura 10.

![3D Torso Voltage Mapping](image)

Figura 10 - Distribuição de cores no torso 3D a partir de um dos dados da Universidade de Leicester.

8. DISCUSSÃO

8.1. Desenvolvimento da plataforma

Houve certa dificuldade na codificação da plataforma devido aos pesquisadores terem pouco conhecimento na linguagem do software utilizado. Por razão disso, há a necessidade de maior aprofundamento no LabView para melhor aproveitamento de seus recursos. Em paralelo, seria interessante o uso de softwares e linguagens de programação que talvez tenham melhores artifícios para o objetivo desejado, buscando também aqueles que poderiam fornecer maior capacidade e velocidade de processamento, bem como um melhor custo-benefício.
8.2. Resultados obtidos

Apesar de ter-se conseguido apenas leituras coerentes a partir de sinais simulados e dados já registrados, e não de uma coleta em tempo real, ao final os gráficos de ECG e 3D do torso se mostraram com imagens satisfatórias a primeira instância, onde pôde-se ver claramente a estrutura do complexo P-QRS-T no ECG, e uma distribuição de cores coerente no 3D do torso, já que as cores que indicam uma amplitude maior estavam muito mais da região do coração e perdendo a amplitude conforme se afastava de tal área.

8.3. Além da plataforma

Todo o desenvolvimento desse trabalho teve o enfoque voltado para elaboração de uma plataforma capaz de ler os dados e trabalhá-los para expor uma visualização amigável e mais intuitiva para uma melhor interpretação desses.

Todavia, há muito mais além da plataforma para que esse tipo de método possa funcionar de forma adequada e eficiente. Temos, por exemplo, a questão dos eletrodos em si para captação dos sinais, onde desde o material utilizado a quantos eletrodos podem ser colocados por vez implicam tanto numa quantidade alta ou baixa de ruído obtido quanto no tempo necessário para se aplicar os eletrodos. Há muito a se trabalhar na eletrônica para adquirir e tratar o sinal, incorporando circuitos de amplificação, conversão analógico-digital e filtros físicos. Fora também a se estabelecer quais são as melhores formas para se gravar e se obter as BSPMs, usando-se de técnicas como interpolação, modelagem e estimação. (Macfarlane, et al., 2011)
9. CONCLUSÃO

Conforme demonstrado nesse trabalho, foi possível ver que há como se aplicar uma plataforma digital para se visualizar um mapeamento dos potenciais da superfície do torso a partir da exposição de diversos canais de ECG simultâneos e de um gráfico 3D capaz de condensar bem a informação da distribuição do sinal elétrico cardíaco, de forma relativamente simples e de fácil compreensão.

Considerando-se que a partir do momento em que mais pesquisas forem feitas para se determinar os padrões de propagação das BSPs para cada cardiopatia, o diagnóstico dessas poderá ser realizado de forma muito mais rápida e eficiente com esse tipo de mapeamento e visualização, a julgar que tal técnica é capaz de sobrepor as limitações das 12 derivações tradicionais do ECG, garantido então tratamentos mais efetivos, minimizando as chances de um quadro mais agravado, evitando as chances de reincidências e, por consequência, aumentando a qualidade de vida dos pacientes.

10. BIBLIOGRAFIA

ECGSIM. An interactive simulation program that enables one to study the relationship between the electric activity of the heart and the resulting potentials on the thorax. *ECGSIM*. [Online] http://www.ecgsim.org/.

